Distributed Deterministic Broadcasting in Uniform-Power Ad Hoc Wireless Networks

نویسندگان

  • Tomasz Jurdzinski
  • Dariusz R. Kowalski
  • Grzegorz Stachowiak
چکیده

Development of many futuristic technologies, such as MANET, VANET, iThings, nano-devices, depend on efficient distributed communication protocols in multi-hop ad hoc networks. A vast majority of research in this area focus on design heuristic protocols, and analyze their performance by simulations on networks generated randomly or obtained in practical measurements of some (usually small-size) wireless networks. Moreover, they often assume access to truly random sources, which is often not reasonable in case of wireless devices. In this work we use a formal framework to study the problem of broadcasting and its time complexity in any two dimensional Euclidean wireless network with uniform transmission powers. For the analysis, we consider two popular models of ad hoc networks based on the Signal-to-Interference-and-Noise Ratio (SINR): one with opportunistic links, and the other with randomly disturbed SINR. In the former model, we show that one of our algorithms accomplishes broadcasting in O(D log n) rounds, where n is the number of nodes and D is the diameter of the network. If nodes know a priori the granularity g of the network, i.e., the inverse of the maximum transmission range over the minimum distance between any two stations, a modification of this algorithm accomplishes broadcasting in O(D log g) rounds. Finally, we modify both algorithms to make them efficient in the latter model with randomly disturbed SINR, with only logarithmic growth of performance. Ours are the first provably efficient and well-scalable, under the two models, distributed deterministic solutions for the broadcast task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LEBRP - A Lightweight and Energy Balancing Routing Protocol for Energy-Constrained Wireless Ad Hoc Networks

A wireless ad hoc network typically refers to any set of wireless networks where all devices have equal status on a network and are free to associate with any other wireless ad hoc network devices in their range. As the nature of these networks, they commonly do not have external power supplies, and each node has a limited internal power source. In this paper, we put forward a new routing proto...

متن کامل

Assessment of DSACC and QPART Algorithms in Ad Hoc Networks

The rapid advancement in wireless over wired has augmented the need for improving theQuality of Service (QoS) over such wireless links. However, the wireless ad hoc networkshave too low bandwidth, and establishing a QoS in these networks is a difficult issue. So,support of quality of service in ad hoc networks is the topical issue among the networkscience researchers. In this research we are go...

متن کامل

Broadcast Routing in Wireless Ad-Hoc Networks: A Particle Swarm optimization Approach

While routing in multi-hop packet radio networks (static Ad-hoc wireless networks), it is crucial to minimize power consumption since nodes are powered by batteries of limited capacity and it is expensive to recharge the device. This paper studies the problem of broadcast routing in radio networks. Given a network with an identified source node, any broadcast routing is considered as a directed...

متن کامل

Localized Construction of Low Weighted Structure and Its Applications in Wireless Ad Hoc Networks

We consider a wireless network composed of a set of n wireless nodes distributed in a two dimensional plane. The signal sent by every node can be received by all nodes within its transmission range, which is uniform and normalized to one unit. We present the first distributed method to construct a bounded degree planar connected structure LRNG, whose total link length is within a constant facto...

متن کامل

Distributed Deterministic Broadcasting in Wireless Networks of Weak Devices

The Signal-to-Interference-and-Noise-Ratio model (SINR) is currently the most popular model for analyzing communication in wireless networks. Roughly speaking, it allows receiving a message if the strength of the signal carrying the message dominates over the combined strength of the remaining signals and the background noise at the receiver. There is a large volume of analysis done under the S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013